Laser-induced nucleation of carbon dioxide bubbles
نویسندگان
چکیده
منابع مشابه
Communication: Bubbles, crystals, and laser-induced nucleation.
Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO(2) bubble nucleation in carbonated water. Additionally, in water that is cosupersaturated wi...
متن کاملTemperature-controlled 'breathing' of carbon dioxide bubbles.
We report a microfluidic (MF) approach to studies of temperature mediated carbon dioxide (CO(2)) transfer between the gas and the liquid phases. Micrometre-diameter CO(2) bubbles with a narrow size distribution were generated in an aqueous or organic liquid and subsequently were subjected to temperature changes in the downstream channel. In response to the cooling-heating-cooling cycle the bubb...
متن کاملCarbon dioxide UV laser-induced fluorescence in high-pressure flames
Laser-induced fluorescence (LIF) of carbon dioxide is investigated with excitation between 215 and 255 nm with spectrally resolved detection in 5–40 bar premixed CH4/O2/Ar and CH4/air flat-flames at fuel/air ratios between 0.8 and 1.9. The LIF signal consists of a broad (200–450 nm) continuum with a faint superimposed structure, and this signal is absent in similar H2/O2/Ar flames. There is str...
متن کاملNonspherical laser-induced cavitation bubbles.
The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40 microm. In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles....
متن کاملDissolution of carbon dioxide bubbles and microfluidic multiphase flows.
We experimentally study the dissolution of carbon dioxide bubbles into common liquids (water, ethanol, and methanol) using microfluidic devices. Elongated bubbles are individually produced using a hydrodynamic focusing section into a compact microchannel. The initial bubble size is determined based on the fluid volumetric flow rates of injection and the channel geometry. By contrast, the bubble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2015
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4917022